Assignment 2 (Questions) Introduction to Machine Learning Prof. B. Ravindran

- 1. Let $A^{m \times n}$ be a matrix of real numbers. The matrix AA^T has an eigenvector x with eigenvalue b. Then the eigenvector y of A^TA which has eigenvalue b is equal to
 - (a) $x^T A$
 - (b) $A^T x$
 - (c) x
 - (d) Cannot be described in terms of x
- 2. Let $A^{n \times n}$ be a row stochaistic matrix in other words, all elements are non-negative and the sum of elements in every row is 1. Let b be an eigenvalue of A. Which of the following is true?
 - (a) |b| > 1
 - (b) $|b| \le 1$
 - (c) $|b| \ge 1$
 - (d) |b| < 1
- 3. Let u be a $n \times 1$ vector, such that $u^T u = 1$. Let I be the $n \times n$ identity matrix. The $n \times n$ matrix A is given by $(I kuu^T)$, where k is a real constant. u itself is an eigenvector of A, with eigenvalue -1. What is the value of k?
 - (a) -2
 - (b) -1
 - (c) 2
 - (d) 0
- 4. Which of the following are true for any $m \times n$ matrix A of real numbers.
 - (a) The rowspace of A is the same as the columnspace of A^T
 - (b) The rowspace of A is the same as the rowspace of A^T
 - (c) The eigenvectors of AA^T are the same as the eigenvectors of A^TA
 - (d) The eigenvalues of AA^T are the same as the eigenvalues of A^TA
- 5. Consider the following 4 training examples
 - x = -1, y = 0.0319
 - x = 0, y = 0.8692
 - x = 1, y = 1.9566
 - x = 2, y = 3.0343

We want to learn a function f(x) = ax + b which is parametrized by (a, b). Using squared error as the loss function, which of the following parameters would you use to model this function.

- (a) (1,1)
- (b) (1,2)
- (c) (2,1)
- (d) (2,2)
- 6. You are given the following five training instances
 - $x_1 = 2, x_2 = 1, y = 4$
 - $x_1 = 6, x_2 = 3, y = 2$
 - $x_1 = 2, x_2 = 5, y = 2$
 - $x_1 = 6, x_2 = 7, y = 3$
 - $x_1 = 10, x_2 = 7, y = 3$

We want to model this function using the K-nearest neighbor regressor model. When we want to predict the value of y corresponding to $(x_1, x_2) = (3, 6)$

- (a) For K = 2, y = 3
- (b) For K = 2, y = 2.5
- (c) For K = 3, y = 2.33
- (d) For K = 3, y = 2.666
- 7. Bias and Variance can be visualized using a classic example of a dart game. We can think of the true value of the parameters as the bull's-eye on a target, and the arrow's value as the estimated value from each sample. Consider the following situations, and select the correct option(s)
 - (a) Player 1 has low variance compared to player 4
 - (b) Player 1 has higher variance compared to player 4
 - (c) Bias exhibited by player 2 is more than that done by player 3.

Figure 1: Figure for Q7

- 8. Choose the correct option(s) from the following.
 - (a) When working with a small dataset, one should prefer low bias/high variance classifiers over high bias/low variance classifiers.
 - (b) When working with a small dataset, one should prefer high bias/low variance classifiers over low bias/high variance classifiers.
 - (c) When working with a large dataset, one should prefer high bias/low variance classifiers over low bias/high variance classifiers.
 - (d) When working with a large dataset, one should prefer low bias/high variance classifiers over high bias/low variance classifiers.
- 9. Consider a modified k-NN method in which once the k nearest neighbours to the query point are identified, you do a linear regression fit on them and output the fitted value for the query point. Which of the following is/are true regarding this method.
 - (a) This method makes an assumption that the data is locally linear.
 - (b) In order to perform well, this method would need dense distributed training data.
 - (c) This method has higher bias compared to K-NN
 - (d) This method has higher variance compared to K-NN
- 10. The Singular Value Decomposition (SVD) of a matrix R is given by USV^T . Consider an orthogonal matrix Q and A = QR. The SVD of A is given by $U_1S_1V_1^T$. Which of the

following is/are true?

Note-There can be more than one correct option.

- (a) $U = U_1$
- (b) $S = S_1$
- (c) $V = V_1$
- 11. Assume that the feature vectors defining the training data are not all linearly independent. What happens if we apply the standard linear regression formulation considering all feature vectors?
 - (a) The coefficients $\hat{\beta}$ are not uniquely defined.
 - (b) $\hat{y} = X\hat{\beta}$ is no longer the projection of y into the column space of X.
 - (c) X is full rank.
 - (d) $X^T X$ is singular.